- operator-valued functional
- операторный функционал
English-russian dictionary of physics. 2013.
English-russian dictionary of physics. 2013.
Operator algebra — In functional analysis, an operator algebra is an algebra of continuous linear operators on a topological vector space with the multiplication given by the composition of mappings. Although it is usually classified as a branch of functional… … Wikipedia
Functional equation — In mathematics or its applications, a functional equation is an equation expressing a relation between the value of a function (or functions) at a point with its values at other points. Properties of functions can for instance be determined by… … Wikipedia
Functional (mathematics) — In mathematics, a functional is traditionally a map from a vector space to the field underlying the vector space, which is usually the real numbers. In other words, it is a function that takes a vector as its argument or input and returns a… … Wikipedia
Projection-valued measure — In mathematics, particularly functional analysis a projection valued measure is a function defined on certain subsets of a fixed set and whose values are self adjoint projections on a Hilbert space. Projection valued measures are used to express… … Wikipedia
Self-adjoint operator — In mathematics, on a finite dimensional inner product space, a self adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose.… … Wikipedia
Borel functional calculus — In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectrum), which has particularly broad… … Wikipedia
Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… … Wikipedia
Decomposition of spectrum (functional analysis) — In mathematics, especially functional analysis, the spectrum of an operator generalizes the notion of eigenvalues. Given an operator, it is sometimes useful to break up the spectrum into various parts. This article discusses a few examples of… … Wikipedia
Spectrum (functional analysis) — In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if… … Wikipedia
Strong operator topology — In functional analysis, a branch of mathematics, the strong operator topology, often abbreviated SOT, is the weakest topology on the set of bounded operators on a Hilbert space (or, more generally, on a Banach space) such that the evaluation map… … Wikipedia
Kernel (linear operator) — Main article: Kernel (mathematics) In linear algebra and functional analysis, the kernel of a linear operator L is the set of all operands v for which L(v) = 0. That is, if L: V → W, then where 0 denotes the null vector… … Wikipedia